Hiroki Naganuma
学習リソース
Deep learning and Physics
深層学習の汎化の謎をめぐって
Mila の Lecture
IFT 6132 – Advanced Structured Prediction and Optimization
IFT 6135 - Representation Learning
IFT 6390: Fundamentals of machine learning
IFT 6085: Theoretical principles for deep learning
IFT 6760B & 6167: Neural Scaling Laws and Foundation Models
IFT 6760A: Matrix and tensor factorization techniques for machine learning
IFT 6756: Game Theory and ML course
MATH 80600A: Machine Learning II: Deep Learning and Applications
COMP 579: Reinforcement Learning
COMP 551: Applied Machine Learning
ECSE 506: Stochastic Control and Decision Theory
Vector Institute の Lecture
CSC2541: Topics in Machine Learning: Neural Net Training Dynamics
CSC 311: Introduction to Machine Learning
MLSS: Machine Learning Summer School
東京大学の資料
Deep Learning Reading Group
PRML, Pattern Recognition and Machine Learning
今泉允聡先生の資料
鈴木大慈先生の資料
深層学習および機械学習の数理
カーネル法と深層学習の数理
Mila の Predoc の勉強資料置き場
(上記全てが範囲)