When Training and Test Sets are Different: Characterising Learning Transfer
"Delving Deep into the Generalization of Vision Transformers under Distribution Shifts":
— Ziwei Liu (@liuziwei7) June 19, 2021
Paper: https://t.co/SC8rnrvFqY
Code: https://t.co/HAOwsK42aG
- We investigate the OOD generalization of vision transformers.
- We integrated domain adaptation techniques into transformers. pic.twitter.com/E5oZHPEo9q
彼らは以下の Shift の分類をしてる
See also OOD Datasets まとめ
Name | Shift Type | Reference |
---|---|---|
MNIST-C | Corruption Shift | Google Github |
MNIST-R (RotatedMNIST) | Rotation? Shift | DomainBed |
CMNIST (ColoredMNIST) | Correlation Shift | DomainBed |
MNIST Background Random | Background Shift | LISA (Prev name of Mila) ‘s description Dataset |
MNIST -> SVHN | Style Shift | Torchvision |
Morpho-MNIST | Perturbation Shift | Github |
ImageNet-Real | ID: Annotation Shift? (relabels the validation set of the original ImageNet in orderto correct labeling errors) | Github |
ImageNet-V2 | ID: Sample Selection Bias? | Github |
ImageNet-C | Corruption Shift | Github |
ImageNet-P | Perturbation Shift | Github |
ImageNet-A | (places the ImageNet objects in unusual contexts or orientations) | Github |
ImageNet-O | OOD (contains image concepts from outside ImageNet-1K) | Github |
ImageNet-R | Style Shift (contains abstract or rendered versions of the object) | Github |
ImageNet-Sketch | Style Shift | Github |
Stylized-ImageNet | Texture Shift | Github |